Mulch & Compost

Peer-reviewed research has shown these are two of the best and most cost effective treatments for trees in compacted and/or disturbed urban soils. Both mimic the natural detritus present in a forest environment. Mulch provides multiple benefits by moderating soil temperatures, conserving soil moisture, reducing soil compaction, suppressing competition, and releasing essential nutrients. Compost adds organic matter and promotes overall tree vitality by releasing essential nutrients, increasing nutrient holding capacity (CEC), increasing aggregation, and improving porosity. Nevertheless, it is vital they are applied properly (types, C:N ratio, areas, volumes, etc.), as misapplication can cause more harm than good.

Natural detritus on the forest floor
Proper Mulching Techniques

Mulching is one of the most beneficial practices a homeowner can use for better tree health.

Mulches are materials placed over the soil surface to maintain moisture and improve soil conditions. Mulching is one of the most beneficial acts a homeowner can do for the health of a tree. However, improper mulching materials and practices may have little, or even negative, impact on the trees in your landscape.

Benefits of Proper Mulching

- Helps reduce soil moisture loss through evaporation
- Helps control weed germination and growth
- Insulates soil, protecting roots from extreme summer and winter temperatures
- Can improve soil biology, aeration, structure (aggregation of soil particles), and drainage over time
- Can improve soil fertility as certain mulch types decompose
- Inhibits certain plant diseases
- Reduces the likelihood of tree damage from “weed whackers” or the dreaded “lawn mower blight”
- Gives planting beds a uniform, well-cared-for look

Trees growing in a natural forest environment have their roots anchored in a rich, well-aerated soil full of essential nutrients and soil microorganisms. The soil is blanketed by leaves, organic materials, and living organisms that replenish and recycle nutrients. This environment is optimal for root growth and mineral uptake. Urban landscapes and new developments, however, are typically harsher environments with poor quality soils, reduced organic matter, and large fluctuations in soil temperature and moisture. Applying a 2- to 4-inch (5- to 10-cm) layer of organic mulch can mimic a more natural environment and improve plant health.

Types of Mulch

Mulches are available in many forms. The two major types of mulch are inorganic and organic. Inorganic mulches include various types of stone, lava rock, pulverized rubber, geotextile fabrics, and other materials. Inorganic mulches do not decompose and do not need to be replenished often. On the other hand, they do not improve soil structure, add organic materials, or provide nutrients. For these reasons, most horticulturists and arborists prefer organic mulches.

Organic mulches include wood chips, pine needles, hardwood and softwood bark, cocoa hulls, leaves, compost mixes, and a variety of other products usually derived from plants. Organic mulches decompose in the landscape at different rates depending on the material, climate, and soil microorganisms present. Those that decompose faster must be replenished more often. Because the decomposition process improves soil quality and fertility, many arborists and other landscape professionals consider that characteristic a positive one, despite the added maintenance.

Not Too Much!

As beneficial as mulch is, too much can be harmful. The generally recommended mulching depth is 2 to 4 inches (5 to 10 cm). Unfortunately, many landscapes are falling victim to a plague of overmulching. “Mulch volcanoes” are excessive piles of mulch materials applied around the base of trees. While organic mulches must be replenished over time, buildup can occur if reapplication outpaces decomposition or if new material is added simply to refresh color. Deep mulch can be effective in suppressing weeds and reducing maintenance, but it often causes additional problems.

Problems Associated with Improper Mulching

- On wet soils, deep mulch can lead to excess moisture in the root zone, which can stress the plant and cause root rot.
- Piling mulch against the trunk or stems of plants can stress stem tissues and may lead to the development of insect and disease problems or stem girdling roots.
• Some mulches, especially those containing fresh grass clippings, can affect soil pH and may eventually lead to nutrient deficiencies or toxic buildups.

• Mulch piled high against the trunks of young trees may create habitats for rodents that chew the bark and can girdle the trees.

• Thick blankets of fine mulch can become matted and may reduce the penetration of water and air.

• Anaerobic “sour” mulch may give off pungent odors, and the alcohols and organic acids that build up may be toxic to young plants.

Proper Mulching

The choice of mulch and the method of application can be important to the health of landscape plants. The following are some guidelines to use when applying mulch:

• Determine whether soil drainage is adequate and if there are plants that may be affected by the choice of mulch. Most commonly available mulches work well in most landscapes. Some plants may benefit from the use of slightly acidifying mulch, such as pine bark.

• For well-drained sites, apply a 2- to 4-inch (5- to 10-cm) layer of mulch (less if poorly drained). Coarse mulches can be applied slightly deeper without harm. Place mulch out to the edge of a tree's crown or beyond. Remember, if a tree had a say in the matter, its entire root system (which usually extends well beyond the drip line) would be mulched.

• If mulch is already present, check the depth. If sufficient mulch is present, break up any matted layers and refresh the appearance with a rake. Some landscape maintenance companies spray mulch with a water-soluble, vegetable-based dye to add color to faded material.

• If mulch is piled against the stems or tree trunks, pull it back several inches/centimeters so that the base of the trunk is exposed. Composted wood chips can make good mulch, especially when they include some bark and leaves. Fresh wood chips also may be used around established trees and shrubs. Avoid using fine, non-composted wood chips, as soil nitrogen may be taken up by the roots as the wood chips decompose.
What is Compost?

Compost is the product resulting from the controlled biological decomposition of organic material that has been sanitized through the generation of heat and stabilized to the point that it is beneficial to plant growth. Compost bears little physical resemblance to the raw material from which it originated.

Compost is an organic matter resource that has the unique ability to improve the chemical, physical, and biological characteristics of soils or growing media. It contains plant nutrients but is typically not characterized as a fertilizer.

How is Compost Produced?

Compost is produced through the activity of aerobic (oxygen-requiring) microorganisms. These microbes require oxygen, moisture, and food in order to grow and multiply. When these factors are maintained at optimal levels, the natural decomposition process is greatly accelerated. The microbes generate heat, water vapor, and carbon dioxide as they transform raw materials into a stable soil conditioner. Active composting is typically characterized by a high-temperature phase that sanitizes the product and allows a high rate of decomposition, followed by a lower-temperature phase that allows the product to stabilize while still decomposing at a lower rate. Compost can be produced from many “feedstocks” (the raw organic materials, such as leaves, manures or food scraps). State and federal regulations exist to ensure that only safe and environmentally beneficial composts are marketed.

Benefits of Compost and its Effects on Soils and Plants

Thanks to its many attributes, compost is extremely versatile and beneficial in many applications. Compost has the unique ability to improve the properties of soils and growing media physically (structurally), chemically (nutritionally), and biologically. Although some equate the benefit of compost use to lush green growth, caused by plant-available nitrogen, the real benefits of using compost are long-term and related to its organic matter content.

Benefits of Using Compost

- Improves the soil structure, porosity, and density, thus creating a better plant root environment.
- Increases infiltration and permeability of heavy soils, thus reducing erosion and runoff.
- Improves water holding capacity, thus reducing water loss and leaching in sandy soils.
- Supplies a variety of macro and micronutrients.
- May control or suppress certain soil-borne plant pathogens.
- Supplies significant quantities of organic matter.
- Improves cation exchange capacity (CEC) of soils and growing media, thus improving their ability to hold nutrients for plant use.
- Supplies beneficial microorganisms to soils and growing media.
- Improves and stabilizes soil pH.
- Can bind and degrade specific pollutants.

Physical Benefits

Improved Structure

Compost can greatly enhance the physical structure of soil. In fine-textured (clay, clay loam) soils, the addition of compost will reduce bulk density, improve friability (workability) and porosity, and increase its gas and water permeability, thus reducing erosion. When used in sufficient quantities, the addition of compost has both an immediate and long-term positive impact on soil structure. It resists compaction in fine-textured soils and increases water holding capacity and improves soil aggregation in coarse-textured (sandy) soils. The soil-binding properties of compost are due to its humus content. Humus is a stable residue resulting from a high degree of organic matter decomposition. The constituents of the humus act as a soil ‘glue,’ holding soil particles together, making them more resistant to erosion and improving the soil’s ability to hold moisture.

Moisture Management

The addition of compost may provide greater drought resistance and more efficient water utilization. Therefore, the frequency and intensity of irrigation may be reduced. Recent research also suggests that the addition of compost in sandy soils can facilitate moisture dispersion by allowing water to more readily move laterally from its point of application.

Chemical Benefits

Modifies and Stabilizes pH

The addition of compost to soil may modify the pH of the final mix. Depending on the pH of the compost and of the native soil, compost addition may raise or lower the soil/compost blend’s pH. Therefore, the addition of a neutral to slightly alkaline compost to an acidic soil will increase soil pH if added in appropriate quantities. In specific conditions, compost has been found to affect soil pH even when applied at quantities as low as 10-20 tons per acre. The incorporation of compost also has the ability to buffer or stabilize soil pH, whereby it will more effectively resist pH change.

---

1 Excerpted from the Field Guide to Compost Use, ©2001 The United States Composting Council
Increases Cation Exchange Capacity

Compost will also improve the cation exchange capacity of soils, enabling them to retain nutrients longer. It will also allow crops to more effectively utilize nutrients, while reducing nutrient loss by leaching. For this reason, the fertility of soils is often tied to their organic matter content. Improving the cation exchange capacity of sandy soils by adding compost can greatly improve the retention of plant nutrients in the root zone.

Provides Nutrients

Compost products contain a considerable variety of macro and micronutrients. Although often seen as a good source of nitrogen, phosphorous, and potassium, compost also contains micronutrients essential for plant growth. Since compost contains relatively stable sources of organic matter, these nutrients are supplied in a slow-release form. On a pound-by-pound basis, large quantities of nutrients are not typically found in compost in comparison to most commercial fertilizers. However, compost is usually applied at much greater rates; therefore, it can have a significant cumulative effect on nutrient availability. The addition of compost can affect both fertilizer and pH adjustment (lime/sulfur addition). Compost not only provides some nutrition, but often makes current fertilizer programs more effective.

Biological Benefits

Provides Soil Biota

The activity of soil organisms is essential in productive soils and for healthy plants. Their activity is largely based on the presence of organic matter. Soil microorganisms include bacteria, protozoa, actinomycetes, and fungi. They are not only found within compost, but proliferate within soil media. Microorganisms play an important role in organic matter decomposition which, in turn, leads to humus formation and nutrient availability. Microorganisms can also promote root activity as specific fungi work symbiotically with plant roots, assisting them in the extraction of nutrients from soils. Sufficient levels of organic matter also encourage the growth of earthworms, which through tunneling, increase water infiltration and aeration.

Suppresses Plant Diseases

Disease incidence on many plants may be influenced by the level and type of organic matter and microorganisms present in soils. Research has shown that increased population of certain microorganisms may suppress specific plant diseases such as pythium and fusarium as well as nematodes. Efforts are being made to optimize the composting process in order to increase the population of these beneficial microbes.

Additional Benefits of Compost

Some additional benefits of compost have been identified, and has led to new uses for it. These benefits and uses are described below.

Binds Contaminants

Compost has the ability to bind heavy metals and other contaminants, reducing both their leachability and absorption by plants. Therefore, sites contaminated with various pollutants may often be improved by amending the native soil with compost. The same binding affect allows compost to be used as a filter media for storm water treatment and has been shown to minimize leaching of pesticides in soil systems.

Degrades Compounds

The microbes found in compost are also able to degrade some toxic organic compounds, including petroleum (hydrocarbons). This is one of the reasons why compost is being used in bioremediation of petroleum contaminated soils.

Wetland Restoration

Compost has also been used for the restoration of native wetlands. Rich in organic matter and microbial population, compost and soil/compost blends can closely simulate the characteristics of wetland soils, thereby encouraging the re-establishment of native plant species.

Erosion Control

Coarser composts have been used with great success as a mulch for erosion control and have been successfully used on sites where conventional erosion control methods have not performed well. In Europe, fine compost has been mixed with water and sprayed onto slopes to control erosion.

Weed Control

Immature composts or ones which possess substances detrimental to plant growth (phytotoxins), are also being tested as an alternative to plastic mulches for vegetable and fruit production. While aiding in moisture conservation and moderating soil temperatures, immature composts also can act as mild herbicides.

A Bright Future

With these many benefits and its myriad of applications, from the traditional growing of plants to novel uses in stormwater management and climate change mitigation, the production and use of compost has a bright future indeed!

Copyright © 2008 The United States Composting Council

US Composting Council
1 Comac Loop, Suite 14B1
Ronkonkoma, NY 11779
phone: 631-737-4931
tax: 631-737-4939
email: uscc@compostingcouncil.org

About the USCC: The United States Composting Council (USCC) is a national not-for-profit organization dedicated to the development, expansion and promotion of the composting industry. For more information visit www.compostingcouncil.org

Disclaimer: Neither the USCC, nor any of its employees, contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, equipment, product, or process discussed herein. Reference to any specific commercial product, process, or service by trade name, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement or recommendation by the USCC.